# On weakly-supplemented subgroups and the solvability of finite groups

Czechoslovak Mathematical Journal (2019)

- Volume: 69, Issue: 2, page 331-335
- ISSN: 0011-4642

## Access Full Article

top## Abstract

top## How to cite

topZhou, Qiang. "On weakly-supplemented subgroups and the solvability of finite groups." Czechoslovak Mathematical Journal 69.2 (2019): 331-335. <http://eudml.org/doc/294255>.

@article{Zhou2019,

abstract = {A subgroup $H$ of a finite group $G$ is weakly-supplemented in $G$ if there exists a proper subgroup $K$ of $G$ such that $G=HK$. In this paper, some interesting results with weakly-supplemented minimal subgroups or Sylow subgroups of $G$ are obtained.},

author = {Zhou, Qiang},

journal = {Czechoslovak Mathematical Journal},

keywords = {weakly-supplemented subgroup; complemented subgroup; solvable group},

language = {eng},

number = {2},

pages = {331-335},

publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},

title = {On weakly-supplemented subgroups and the solvability of finite groups},

url = {http://eudml.org/doc/294255},

volume = {69},

year = {2019},

}

TY - JOUR

AU - Zhou, Qiang

TI - On weakly-supplemented subgroups and the solvability of finite groups

JO - Czechoslovak Mathematical Journal

PY - 2019

PB - Institute of Mathematics, Academy of Sciences of the Czech Republic

VL - 69

IS - 2

SP - 331

EP - 335

AB - A subgroup $H$ of a finite group $G$ is weakly-supplemented in $G$ if there exists a proper subgroup $K$ of $G$ such that $G=HK$. In this paper, some interesting results with weakly-supplemented minimal subgroups or Sylow subgroups of $G$ are obtained.

LA - eng

KW - weakly-supplemented subgroup; complemented subgroup; solvable group

UR - http://eudml.org/doc/294255

ER -

## References

top- Arad, Z., Ward, M. B., 10.1016/0021-8693(82)90288-5, J. Algebra 77 (1982), 234-246. (1982) Zbl0486.20018MR0665175DOI10.1016/0021-8693(82)90288-5
- Doerk, K., Hawkes, T., 10.1515/9783110870138, De Gruyter Expositions in Mathematics 4, de Gruyter, Berlin (1992). (1992) Zbl0753.20001MR1169099DOI10.1515/9783110870138
- Guralnick, R. M., 10.1016/0021-8693(83)90190-4, J. Algebra 81 (1983), 304-311. (1983) Zbl0515.20011MR0700286DOI10.1016/0021-8693(83)90190-4
- Hall, P., 10.1112/jlms/s1-12.2.198, J. Lond. Math. Soc. 12 (1937), 198-200. (1937) Zbl0016.39204MR1575073DOI10.1112/jlms/s1-12.2.198
- Hall, P., 10.1112/jlms/s1-12.2.201, J. London Math. Soc. 12 (1937), 201-204. (1937) Zbl0016.39301MR1575074DOI10.1112/jlms/s1-12.2.201
- Huppert, B., 10.1007/978-3-642-64981-3, Springer, Berlin (1967), German. (1967) Zbl0217.07201MR0224703DOI10.1007/978-3-642-64981-3
- Kong, Q., Liu, Q., 10.1007/s10587-014-0092-y, Czech. Math. J. 64 (2014), 173-182. (2014) Zbl1321.20021MR3247453DOI10.1007/s10587-014-0092-y

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.