I recently purchased a number of Orange Pi and Nano Pi boards, and discovered the awesome work of the Armbian team :-) The Orange Pi Plus2 H5 is a rather nice board - built in eMMC, H5, etc. (I wish it had 1GB of RAM but that's a different subject.) I'd love to use these boards for a number of projects.
As a test, I modified the DTS for the board (mainline kernel) to enable support for the 1.1v/1.3v switch for VDD-CPUX using the SY8113B on the board. I also enabled the allowed clock changes to 1.2GHz for cpufreq. All of this worked great, but the board was very unstable at anything over 1GHz, which seemed strange, given that the CPU voltage should be switching to 1.3v.
I found that when measuring the voltage of the "1V2C" testpoint on the board that VDD-CPUX was always at 1.1v - it never switched to 1.3v. I did some further examination of the board, and I was surprised to find that the "Q5" BSN20 MOSFET was not populated on the board! I checked all of the other passives and they are present - it is like Xunlong simply decided not to stuff this part when they built the board.
So, as a test, I desoldered this part from my Orange Pi Zero rev 1.4 board and soldered it in the missing "Q5" spot on my Orange Pi Zero Plus2 board. And now it works great! VDD-CPUX properly switches between 1.1v/1.3v (measured at the "1V2C" TP), and I can clock the board to 1.296GHz without any problems.
Would anyone have an idea why Xunlong doesn't solder this part on the board by default? They include all the other parts in this part of the power circuit, just not this MOSFET. I was going to buy a few more of these boards, and I'd like to be able to clock them up. Perhaps I should just order a set of these BSN20 MOSFETs and solder them on myself when I receive the boards...?
Or perhaps I should just forget Xunlong/Orange Pi and use Nano Pis? My Nano Pi Neo Plus2 has been working perfectly since I powered it up (I enabled clocking to 1.296GHz by default as well in the DTS). By the way, I did some extensive tests and it looks like with both of these boards DVFS and thermal throttling works fine - the clock throttles back properly at the different temperature thresholds.
Question
5kft
I recently purchased a number of Orange Pi and Nano Pi boards, and discovered the awesome work of the Armbian team :-) The Orange Pi Plus2 H5 is a rather nice board - built in eMMC, H5, etc. (I wish it had 1GB of RAM but that's a different subject.) I'd love to use these boards for a number of projects.
As a test, I modified the DTS for the board (mainline kernel) to enable support for the 1.1v/1.3v switch for VDD-CPUX using the SY8113B on the board. I also enabled the allowed clock changes to 1.2GHz for cpufreq. All of this worked great, but the board was very unstable at anything over 1GHz, which seemed strange, given that the CPU voltage should be switching to 1.3v.
I found that when measuring the voltage of the "1V2C" testpoint on the board that VDD-CPUX was always at 1.1v - it never switched to 1.3v. I did some further examination of the board, and I was surprised to find that the "Q5" BSN20 MOSFET was not populated on the board! I checked all of the other passives and they are present - it is like Xunlong simply decided not to stuff this part when they built the board.
So, as a test, I desoldered this part from my Orange Pi Zero rev 1.4 board and soldered it in the missing "Q5" spot on my Orange Pi Zero Plus2 board. And now it works great! VDD-CPUX properly switches between 1.1v/1.3v (measured at the "1V2C" TP), and I can clock the board to 1.296GHz without any problems.
Would anyone have an idea why Xunlong doesn't solder this part on the board by default? They include all the other parts in this part of the power circuit, just not this MOSFET. I was going to buy a few more of these boards, and I'd like to be able to clock them up. Perhaps I should just order a set of these BSN20 MOSFETs and solder them on myself when I receive the boards...?
Or perhaps I should just forget Xunlong/Orange Pi and use Nano Pis? My Nano Pi Neo Plus2 has been working perfectly since I powered it up (I enabled clocking to 1.296GHz by default as well in the DTS). By the way, I did some extensive tests and it looks like with both of these boards DVFS and thermal throttling works fine - the clock throttles back properly at the different temperature thresholds.
Thank you!
Link to comment
Share on other sites
135 answers to this question
Recommended Posts