tahaea1

Members
  • Content Count

    11
  • Joined

  • Last visited

Reputation Activity

  1. Like
    tahaea1 reacted to tkaiser in SD card performance   
    2018 SD card update
     
    It's 2018 now, SD Association's A1 'performance class' spec is out over a year now and in the meantime we can buy products trying to be compliant to this performance class. SD cards carrying the A1 logo must be able to perform at least 1500 random read input-output operations per second (IOPS) with 4KB block size, 500 random write IOPS and 10 MB/s sustained sequential performance (see here for more details and background info)
     
    Why is this important? Since what we do on SBC at least for the rootfs is mostly random IO and not sequential IO as it's common in cameras or video recorders (that's the stuff SD cards have been invented to be used with in the beginning). As an SBC (or Android) user we're mostly interested in high random IO performance with smaller blocksizes since this is how 'real world' IO patterns mostly look like. Prior to A1 and A2 performance classes there was no way to know how SD cards perform in this area prior to buying. Fortunately this has changed now.
     
    Last week arrived an ODROID N1 dev sample so I bought two SanDisk A1 cards with 32GB capacity each. An el cheapo 'Ultra A1' for 13€ (~$15) and an 'Extreme A1' for 23€. I wanted to buy a slightly more expensive 'Extreme Plus A1' (since even more performance and especially reliability/longevity) but ordered the wrong one  Please keep in mind that the 'Extreme Plus' numbers shown below are made with an older card missing the A1 logo.
     
    Let's look how these things perform, this time on a new platform: RK3399 with an SD card interface that supports higher speed modes (requires kernel support and switching between 3.3V to 1.8V at the hardware layer). So results aren't comparable with the numbers we generated the last two years in this and other threads but that's not important any more... see at the bottom.
     
    A1 conformance requires at least 10 MB/s sequential performance and 500/1500 (write/read) IOPS with 4K blocksize. I tested also with 1K and 16K blocksizes for the simple reason to get an idea whether 4K results are useful to determine performance with smaller or larger blocksizes (since we already know that the vast majority of cheap SD cards out there shows a severe 16K random write performance drop which is the real reason so many people consider all SD cards being crap from a performance point of view).
     
    I tested with 7 cards, 4 of them SanDisk, two Samsung and the 'Crappy card' being a results mixture of a 4GB Kingston I started to test with and old results from a 4GB Intenso from two years ago (see first post of this thread). The Kingston died when testing with 4K blocksize and the performance of all these crappy 'noname class' cards doesn't vary that much:
    1K w/r 4K w/r 16K w/r Crappy card 4GB 32 1854 35 1595 2 603 Samsung EVO+ 128GB 141 1549 160 1471 579 1161 Ultra A1 32GB 456 3171 843 2791 548 1777 Extreme A1 32GB 833 3289 1507 3281 1126 2113 Samsung Pro 64GB 1091 4786 1124 3898 478 2296 Extreme Plus 16GB 566 2998 731 2738 557 2037 Extreme Pro 8GB 304 2779 323 2754 221 1821 (All results in IOPS --> IO operations per second) For A1 compliance we only need to look at the middle column and have to expect at least 500/1500 IOPS minimum here. The 'Crappy card' fails as expected, the Samsung EVO+ too (but we already knew that for whatever reasons newer EVO+ or those with larger capacity perform worse than the 32GB and 64GB variants we tested two years ago), the Samsung Pro shows the best performance here while one of the 4 SanDisk also fails. But my Extreme Pro 8GB is now 3 years old, the other one I had showed signs of data corruption few months ago and when testing 2 years ago (see 1st post in this thread) random write performance was at 800. So most probably this card is about to die soon and the numbers above are partially irrelevant..
     
    What about sequential performance? Well, 'Crappy card' also not able to meet specs and all the better cards being 'bottlenecked' by ODROID N1 (some of these cards show 80 MB/s in my MacBook's card reader but Hardkernel chose to use some safety headroom for good reasons and limits the maximum speed for improved reliability)
    MB/s write MB/s read Crappy card 4GB 9 15 Samsung EVO+ 128GB 21 65 Ultra A1 32GB 20 66 Extreme A1 32GB 59 68 Samsung Pro 64GB 61 66 Extreme Plus 16GB 63 67 Extreme Pro 8GB 50 67 Well, sequential transfer speeds are close to irrelevant with single board computers or Android but it's good to know that boards that allow for higher SD card speed modes (e.g. almost all ODROIDs and the Tinkerboard) also show an improvement in random IO performance if the card is a good one. The ODROID N1 was limited to DDR50 (slowest SD card mode) until today when Hardkernel unlocked UHS capabilities so that my cards (except of 'Crappy card') could all use SDR104 mode. With DDR50 mode sequential performance is limited to 22.5/23.5MB/s (write/read) but more interestingly random IO performance also differs. See IOPS results with the two SanDisk A1 cards, one time limited to DDR50 and then with SDR104:
    1K w/r 4K w/r 16K w/r Ultra A1 DDR50 449 2966 678 2191 445 985 Ultra A1 SDR104 456 3171 843 2791 548 1777 1K w/r 4K w/r 16K w/r Extreme A1 DDR50 740 3049 1039 2408 747 1068 Extreme A1 SDR104 833 3289 1507 3281 1126 2113 We can clearly see that the larger the blocksize the more the interface speed influences also random IO performance (look especially at 16K random reads that double with SDR104)
     
    Some conclusions:
    When comparing results above the somewhat older Samsung Pro performs pretty similar to the Extreme A1. But great random IO performance is only guaranteed with cards carrying the A1 logo (or A2 soon) so it might happen to you that buying another Samsung Pro today results in way lower random IO performance (see Hardkernel's results with a Samsung Pro Plus showing 224/3023 4k IOPS which is way below the 1124/3898 my old Pro achieves with especially write performance 5 times worse and below A1 criteria) We still need to focus on the correct performance metrics. Sequential performance is more or less irrelevant ('Class 10', 'UHS' and so on), all that matters is random IO (A1 and A2 soon). Please keep in mind that you can buy a nice looking UHS card from 'reputable' brands like Kingston, Verbatim, PNY and the like that might achieve theoretical 80MB/s or even 100MB/s sequential performance (you're not able to benefit from anyway since your board's SD card interface will be the bottleneck) but simply sucks with random IO performance. We're talking about up to 500 times worse performance when trusting in 'renowned' brands and ignoring performance reality (see 16k random writes comparing 'Crappy card' and 'Extreme A1') Only a few vendors on this planet run NAND flash memory fabs, only a few companies produce flash memory controllers and have the necessary know-how in house. And only a few combine their own NAND flash with their own controllers to their own retail products. That's the simple reason why at least I only buy SD cards from these 4 brands: Samsung, SanDisk, Toshiba, Transcend The A1 performance speed class is a great and necessary improvement since now we can rely on getting covenant random IO performance. This also helps in fighting counterfeit flash memory products since even if fraudsters in the meantime produce fake SD cards that look real and show same capacity usually these fakes suck at random IO performance. So after testing new cards with either F3 or H2testw it's now another iozone or CrystalDiskMark test to check for overall performance including random IO (!) and if performance sucks you simply return the cards asking for a refund. TL;DR: If you buy new SD cards choose those carrying an A1 or A2 logo. Buy only good brands (their names start with either S or T). Don't trust in getting genuine products but always expect counterfeit stuff. That's why you should only buy at sellers with a 'no questions asked' return/refund policy and why you have to immediately check your cards directly after purchase. If you also care about reliability/resilience buy more expensive cards (e.g. the twice as expensive Extreme Plus A1 instead of Ultra A1) and choose larger capacities than needed.
     
    Finally: All detailed SD card test results can be found here: https://pastebin.com/2wxPWcWr As a comparison performance numbers made with same ODROID N1, same settings but vendor's orange eMMC modules based on Samsung eMMC and varying only in size: https://pastebin.com/ePUCXyg6
  2. Like
    tahaea1 got a reaction from UnixOutlaw in Armbian wallpaper remake   
    Heres my try. Instead of one fixed colorset I chose some different colors too, can be used for alfa-beta-stable, release versions etc.
     

     
    Recreation of Tux is under Public Commons.
     
    RGB codes for different colors are included. Can be used for branding in general.
     
    https://dl.dropboxusercontent.com/u/49778084/armbian.zip
  3. Like
    tahaea1 got a reaction from pfeerick in Armbian wallpaper remake   
    Heres my try. Instead of one fixed colorset I chose some different colors too, can be used for alfa-beta-stable, release versions etc.
     

     
    Recreation of Tux is under Public Commons.
     
    RGB codes for different colors are included. Can be used for branding in general.
     
    https://dl.dropboxusercontent.com/u/49778084/armbian.zip
  4. Like
    tahaea1 got a reaction from tkaiser in Armbian wallpaper remake   
    Heres my try. Instead of one fixed colorset I chose some different colors too, can be used for alfa-beta-stable, release versions etc.
     

     
    Recreation of Tux is under Public Commons.
     
    RGB codes for different colors are included. Can be used for branding in general.
     
    https://dl.dropboxusercontent.com/u/49778084/armbian.zip
  5. Like
    tahaea1 got a reaction from chzbacon in Armbian wallpaper remake   
    Heres my try. Instead of one fixed colorset I chose some different colors too, can be used for alfa-beta-stable, release versions etc.
     

     
    Recreation of Tux is under Public Commons.
     
    RGB codes for different colors are included. Can be used for branding in general.
     
    https://dl.dropboxusercontent.com/u/49778084/armbian.zip
  6. Like
    tahaea1 got a reaction from Nixes in Armbian wallpaper remake   
    Heres my try. Instead of one fixed colorset I chose some different colors too, can be used for alfa-beta-stable, release versions etc.
     

     
    Recreation of Tux is under Public Commons.
     
    RGB codes for different colors are included. Can be used for branding in general.
     
    https://dl.dropboxusercontent.com/u/49778084/armbian.zip
  7. Like
    tahaea1 got a reaction from Igor in Armbian wallpaper remake   
    Heres my try. Instead of one fixed colorset I chose some different colors too, can be used for alfa-beta-stable, release versions etc.
     

     
    Recreation of Tux is under Public Commons.
     
    RGB codes for different colors are included. Can be used for branding in general.
     
    https://dl.dropboxusercontent.com/u/49778084/armbian.zip
  8. Like
    tahaea1 reacted to Igor in More proper testing - better Armbian experience   
    We made some boot related changes. Can someone with Odroid XU4 please check if this image boots and if not ... serial console debug would be great to debug. / my XU4 is still running this forum.
     
    http://image.armbian.com/betaimages/
  9. Like
    tahaea1 got a reaction from slinde in OrangePi PC $8.54 gearbest   
    Since when xunlong started selling boards on gearbest? Anyone bought from here before?
     
    http://www.gearbest.com/boards-shields/pp_314651.html